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Abstract. Automated dermoscopic image analysis has witnessed rapid
growth in diagnostic performance. Yet adoption faces resistance, in part,
because no evidence is provided to support decisions. In this work, an
approach for evidence-based classification is presented. A feature embed-
ding is learned with CNNs, triplet-loss, and global average pooling, and
used to classify via kNN search. Evidence is provided as both the discov-
ered neighbors, as well as localized image regions most relevant to mea-
suring distance between query and neighbors. To ensure that results are
relevant in terms of both label accuracy and human visual similarity for
any skill level, a novel hierarchical triplet logic is implemented to jointly
learn an embedding according to disease labels and non-expert similar-
ity. Results are improved over baselines trained on disease labels alone,
as well as standard multiclass loss. Quantitative relevance of results, ac-
cording to non-expert similarity, as well as localized image regions, are
also significantly improved.
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1 Introduction

In the past decade, advancement in computer vision techniques has been facili-
tated by both large-scale datasets and deep learning approaches. Now this trend
is influencing dermoscopic image analysis, where the International Skin Imaging
Collaboration (ISIC) has organized a large public repository of high quality an-
notated images, referred to as the ISIC Archive (http://isic-archive.com). From
this repository, snapshots of the dataset have been used to host two consecu-
tive years of benchmark challenges [1, 2], which have increased interest in the
computer vision community [2–6], and supported the development of methods
that surpassed the diagnostic performance of expert clinicians [2–4]. However,
despite these advancements, deployment to clinical practice remains problem-
atic, in part, because most systems lack evidence for predictions that can be
interpreted by users of varying skill.
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Recent works have attempted to provide various forms of evidence for de-
cisions. Methods to visualize feature maps in neural networks were introduced
in 2015 [7], facilitating better understanding of the behavior of networks, but
not justifying predictions made on specific image inputs. Global average pooling
approaches have been proposed [8], which get closer to justifying decisions on
specific image inputs by indicating importance of image regions to those deci-
sions, but fail to provide specific evidence behind the classifications.

An extensive body of prior work around content-based image retrieval (CBIR)
is perhaps the most relevant toward providing classification decisions with ev-
idence [9–13]. Early approaches relied on low-level features and bag-of-visual
words, [9–11], but suffered from the “semantic gap”: feature similarity did not
necessarily correlate to label similarity. Later approaches have used deep neural
networks to learn an embedding for search, reducing semanic gap issues [13].
However, such methods have still suffered from a “user-gap”: what an embed-
ding learns to consider as similar from disease point-of-view does not necessarily
correlate with human measures of similarity. In addition, users cannot determine
what spatial regions of images contributed most to distance measures.

Specific to the domain of dermoscopic image analysis, one work proposed to
learn and localize clinically discriminative patterns in images [5]; however, this
output can only be verified by experts who know how to identify the patterns.
In addition, classifier decision localization has been proposed for multimodal
systems [14]; however, localization information alone isn’t sufficient as evidence
for classification decisions.

In this work, a solution for a Collaborative Human-AI (CHAI) dermoscopic
image analysis system is presented. In order to facilitate interpretability of ev-
idence by clinical staff of any skill level, this approach 1) introduces a novel
hierarchical triplet loss to learn an embedding for k-nearest neighbor search, op-
timized jointly from disease labels as well as non-expert human similarity, and
2) provides localization information in the form of query-result activation map
pairs, which designate regions in query and result images used to measure dis-
tance between the two. Experiments demonstrate that the proposed approach
improves classification performance in comparison to models trained on disease
labels alone, as well as models trained with classification loss. The relevancy of
results, according to non-expert similarity, are also significantly improved.

2 Methods

2.1 Triplet-Loss with Global Average Pooling

The proposed embedding framework is displayed in Fig. 1a. A triplet loss struc-
ture [15] is combined with penultimate global average pooling layers [8] to
learn a discriminative feature embedding that supports activation localization.
AlexNet, including up to the “conv5” layer, is used as the CNN.

In order to train, 3 deep neural networks with shared weights across 3 in-
put images (xa, xb, xc) produce feature embeddings (f(xa), f(xb), f(xc)). The
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Fig. 1. a) Proposed triplet loss framework with global average pooling (GAP) architec-
ture. b) Top: Visual example of proposed hierarchical annotation groups. The first level
grouping is by disease label (D1-2), and the second level by human visual similarity
(G1-4). Bottom: Example triplet logic is shown as pairing between groups.

following objective function over those embeddings provides the gradient for
backpropagation:

L = max

[
0, l + D(f(xa), f(xb)) − 1

2
(D(f(xa), f(xc)) + D(f(xb), f(xc)))

]
(1)

where D() is a distance metric (squared Euclidean distance), l is a constant
representing the margin (set to 1), xa and xb are considered similar inputs, and
xc is a dissimilar input.

The feature embedding is comprised of a global average pooling (GAP) layer
to support generation of a query-result activation map pair, which highlights
regions of pairs of images that contributed most toward the distance measure
between them. This is done by combining the feature layer activation maps prior
to global average pooling into a single grayscale image, weighted by the squared
differences between two image feature embeddings:

Aq(i, j) =

d∑
z=0

gz(xq, i, j)) · (fz(xq) − fz(xr))2 (2)

where Aq(i, j) is the query activation map (QAM), gz(x, i, j) is the zth filter
bank before global average pooling, d is the dimensionality of the filter bank, xq

is the query image, xr is a search result image, and:

fz(x) =
1

n2

n∑
i=0

n∑
j=0

gz(x, i, j) (3)
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Fig. 2. Example groups by disease category from the ISIC database (left), by non-
expert similarity disregarding disease diagnosis (center), and by non-expert similarity
constrained within disease groups (right).

is the zth feature embedding element. The result activation map (RAM) Ar

in the query-result pair is likewise computed as in Eq. 2, where gz(xq, i, j) is
replaced with gz(xr, i, j).

2.2 Hierarchical Triplet Selection Logic

An example of the hierarchical triplet selection logic is shown in Fig. 1b. Given
visually similar groups annotated under disease labels, a hierarchical selection
process pairs images as similar if they are siblings within the same group under
a disease parent. Dissimilar images include images from other disease states, but
exclude cousin images (images within the same disease, but different similarity
group). A non-hierarchical selection process takes dissimilar images from any
other group, including cousins.

2.3 Experimental Design

The 2017 International Skin Imaging Collaboration (ISIC) challenge on Skin
Lesion Analysis Toward Melanoma Detection [1] dataset is used for experimen-
tation. This is a public dataset consisting of 2000 training dermoscopic images
and 600 test images. Experiments on this data compare between the following 6
feature embeddings for kNN classification:

Baseline: The first is the 4096 dimensional fc6 feature embedding layer of
the AlexNet architecture trained on the CASIA-WebFace dataset, described in
prior work [15]. This is used as the baseline as it is one of the only human-skin
focused pre-trained networks currently available.

BaselineFT: Baseline 4096 is fine-tuned for disease labels using standard
multiclass accuracy loss. This method represents one of the most common ap-
proaches for generating embeddings for KNN classification in practice.

Disease: This is a 1024 dimensional CHAI feature embedding, learned from
disease labels on the training data partition of the ISIC dataset, fine-tuned from
the baseline.

Joint: This is a CHAI feature embedding jointly fine-tuned from baseline
using disease labels, as well as non-expert human similarity groupings, consisting
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Fig. 3. Example search results across systems, displayed according to similarity rank,
with rank 1 being the most similar image in the training dataset. Red borders signify
instances of melanoma.

of 1700 images pulled from the ISIC Archive (excluding test images), annotated
into 37 distinct groups. The annotator was not given disease labels, and thus
may mix diseases within groups. Example groups are shown in Fig. 2.

Hierarchical: This is a CHAI feature embedding fine-tuned from the disease
model using human similarity groups that are dependent on disease labels. All
2000 images and 600 test images were annotated from the 2017 ISIC challenge
dataset, partitioned into 20 groups of similar images under melanoma, 12 groups
under seborrheic keratosis, and 15 groups under benign nevus, according to a
non-expert human user. Because this type of data is difficult to annotate, only
1000 training images were used for fine-tuning. The remainder of the data was
used for evaluation. Examples of these groups are shown in Fig. 2. Triplets were
selected based on hierarchical logic.

Non-Hierarchical: To isolate the effects of hierarchical logic, and disease
labels being provided to the annotator, the hierarchical groups are used to create
triplets using non-hierarchical logic: dissimilar images are selected from any other
group, including cousins.

Most learning parameters are kept consistent with prior art [15], including
the activation map feature dimensionality of 1024 [8], batch size 128, momentum
of 0.9, “step” learning rate policy, learning rate for transferred weights (0.00001),
and learning rate for randomly initialized GAP layer (0.01). For BaselineFT, a
learning rate of 0.01 was used for fc8, 0.001 for fc7 and fc6, and 0.00001 for earlier
layers. For all triplet experiments, 150,000 triplets were randomly generated for
training, and 50,000 triplets for validation.



6 Codella et al.

Baseline BaselineFT Disease Joint Non-Hierarchical Hierarchical

AUC k3 0.663 0.700 0.734 0.704 0.713 0.729
AUC k5 0.675 0.714 0.744 0.738 0.743 0.756
AUC k10 0.681 0.709 0.757 0.754 0.749 0.774
AUC k20 0.712 0.745 0.775 0.752 0.769 0.783
AUC k40 0.691 0.742 0.776 0.760 0.776 0.786

REL k3 0.942 1.005 0.865 1.048 1.212 1.125
REL k5 1.505 1.608 1.412 1.678 1.958 1.872
REL k10 2.875 3.027 2.632 3.147 3.793 3.658
REL k20 5.470 5.772 4.903 6.067 7.300 6.968
REL k40 10.283 10.703 9.125 11.507 13.958 13.333

JA NA NA 0.176 0.201 0.193 0.208
Table 1. Melanoma Classification AUC for each method and number of neighbors
(k), followed by number of results matching human similarity relevancy (REL), and
Jaccard (JA) of QAM against segmentation ground truth.

The area under receiver operating characteristic (ROC) curve (AUC) is used
to measure melanoma classification performance on the dataset, according to av-
erage vote among returned nearest neighbors. The hierarchical similarity anno-
tations were used to measure the average number of results matching non-expert
human relevancy (REL) across all experiments. Finally, the quality of query acti-
vation maps are quantitatively measured by comparing the maps against ground
truth segmentation according to Jaccard (JA).

3 Results

Table 1 shows the measured AUC for each model type and variable number
of neighbors (k), the number of results matching non-expert human similarity
relevance (REL), and the Jaccard of the query activation maps as judged against
ground truth segmentations. For comparison, standard classification output from
multi-class loss used to train BaselineFT produces an AUC of 0.772. The top
AUC measured for the challenge was 0.874 [5].

For k = 3, Disease achieved the highest AUC. Surprisingly, at k = 20, 40,
Disease outperforms the classification output of BaselineFT (0.772 AUC). For
all other values of k, the Hierarchical triplet loss embedding achieved the highest
performance. At k = 40, these performance numbers were comparable with pre-
dictive systems submitted to the challenge (rank 11 out of 23 submissions). The
Hierarchical triplet loss also achieved the second highest number of human simi-
larity relevant results. While the Non-Hierarchical method achieved the highest
degree of human similarity relevant results, this came at the marginal cost of
some classification performance in comparison to Hierarchical triplets. However,
Non-Hierarchical has still matched the classification performance of Disease,
and outperformed the standard multiclass loss of BaselineFT. Joint also showed
improvements to relevance of human similarity in comparison to Disease, but
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Fig. 4. Example query-result activation pairs for search results. In each group of 4
images: Top-Left: query image. Top-Right: query activation map. Bottom-Left: search
result. Bottom-Right: search result activation map.

suffered a more harsh penalty to classification performance in comparison to
Hierarchical and Non-Hierarchical.

Representative search results can be inspected in Fig. 3. One can observe here
how Disease, trained directly on triplets from disease labels, does not translate
into the most “relevant” results by human measure: clearly, rank 3 has returned
a hypo-pigmented lesion for a pigmented lesion query. In contrast, Joint, while
maintaining a robust improvement in AUC measures over Baseline and Base-
lineFT, has additionally learned to balance disease similarity with a more human
measure of similarity. Hierarchical has both managed to improve classification
performance and human similarity.

Finally, example query-result activation map pairs are shown in Fig. 4. In-
terestingly, Disease learned to examine a broad image extent during comparisons
(even potentially irrelevant areas of images), whereas for the models trained with
human measures of similarity, the systems have learned to focus more to the lo-
calized lesion area. This is confirmed in the over 10% quantitative improvement
in Jaccard index comparing to ground truth lesion segmentations, as shown in
Table 1.

4 Conclusion

In conclusion, “CHAI”, a Collaborative Human-AI system to perform compre-
hensive evidence-based melanoma classification in dermoscopic images has been
presented. Evidence is provided as both the nearest neighbors used for classifi-
cation, as well as query-result activation map pairs that visualize regions of the
images contributing most toward a distance computation. Using a novel hier-
archical triplet loss, non-expert human similarity is used to tailor the feature
embedding to more closely approximate human judgments of relevance, while
simultaneously improving classification performance and the quality of the ac-
tivation maps. Future work must be carried-out to determine 1) whether the
method has the potential to improve adoption, 2) how to improve classification
performance to better compete with other black-box systems, and 3) whether
passive user interaction with a deployed system can be used for training (for ex-
ample, from a user clicking on a specific evidence result) to improve classification
performance and relevance over time with continued use.
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